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It is difficult to perform multidisciplinary design optimization using traditional search-
based optimization techniques due to possible conflicts among objectives from different
disciplines, the time consuming search, and the possibility of divergence. To overcome the dif-
ficulties, this paper presents simulation-based design optimization techniques using Taguchi
methods and soft computing (i.e. fuzzy logic and neural networks). An aircraft engine cycle
design optimization with four conflicting design objectives is used to validate the presented
approach. The result shows significant performance improvement in optimizing single and
multiple design objectives.

I. Introduction

THE emerging field of Multidisciplinary Design Optimization (MDO) seeks to improve design methodology to
rapidly and efficiently explore multiple-dimension design spaces with the goal of increasing system performance

significantly, thereby reducing end-product cost substantially. Search-based and simulation-based are the two major
system design approaches. The former is traditional and mathematical, and has existed for a long time. The optimum
solution has to do with the selected starting point, and the optimization method used. A possibility of divergence in
solution seeking is a major drawback in this approach. In contrast, the simulation-based approach uses the analysis and
evaluation of a candidate solution, and the assessment of the degree to which the candidate satisfies the requirement.
This optimum design tool uses the simulation-based approach.1 With this new approach, the optimum solution can
be obtained in real time.

The traditional search-based optimization is a typical example of hard computing. In hard computing, the prime
desiderata are precision, certainty and vigor. In contrast, in soft computing the principal notion is that precision and
certainty carry a cost; and that computation, reasoning, and decision-making should exploit (whenever possible) the
tolerance for imprecision, uncertainty, approximate reasoning, and partial truth for obtaining low cost solutions.

Fuzzy logic and neural networks, the two major soft computing techniques, have very contrasting application
requirements. Fuzzy systems are appropriate if sufficient expert knowledge about the process is available, while
neural systems are useful if sufficient data are available or measurable. Furthermore, neural networks possess the
ability to learn the input-output relationship. A trained neural network provides instantly input-to-output mapping
with reasonably good accuracy, but without knowledge representation. Fuzzy logic, on the other hand, possesses the
ability for knowledge representation and inference, but has no capabilities for automated learning. Thus, fuzzy logic
and neural networks compensate each other in terms of information processing.
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A fast multidisciplinary system optimization tool is presented, and an aircraft engine cycle design optimization is
used to validate the presented design approach. In addition, the two important issues in design optimization: global
optimization versus local optimization and single-objective versus multiple-objectives are investigated.

II. The Design Optimization Methodology
In a typical multidisciplinary system, there are many disciplinary application modules, and several design objec-

tives under each module. The goal is to develop a design tool that can perform fast-optimized multidisciplinary
system design in real time within good accuracy.

The design tool is structured in a way that every module is optimized and trained separately so that if one module
for a specific application is changed, the others can remain unchanged. Each application module has several design
objectives. For instance, the engine cycle module has four design objectives: maximizing thrust, minimizing fuel
consumption, minimizing emission, and minimizing jet velocity.

When dealing with multiple objectives, the optimum solution has to be compromised to resolve the potential
conflict among the objectives. Two primary issues in multiple objective decision-makings are to acquire meaningful
information regarding the satisfaction of the objectives by the various choices (alternatives) and to rank or weight
the relative importance of each of the objectives. Bass and Kwakernaak2 proposed the concept of rating and ranking
of multiple-aspect alternatives using fuzzy sets. Later Yager3 proposed a decision-making methodology based on
fuzzy sets, which requires the ordinal information about the ranking of preferences and importance weights. In 1993,
Sakawa4 extended the Yager’s work by making multiple-objective optimization interactive using fuzzy sets.

Design alternatives are usually evaluated at the preliminary design stage using primarily fuzzy sets. However, at
the design optimization stage, there are no design alternatives to evaluate because the design configuration is already
determined. In this case, fuzzy sets will not be as useful. But, fuzzy logic when combined with other techniques can
play an important role in design optimization.

The presented simulation-based optimization is accomplished by combining Taguchi methods, fuzzy logic and
neural networks. They are briefly described below:

A. Taguchi Methods
Taguchi methods are a statistical process that perturbs a parameter in order to study its influence on the overall

output. Taguchi methods’ strength lies in their ability to extract relatively large amount of information from limited
experiments (fractional factorial compared to full factorial). The basic tools used to obtain the information are
orthogonal arrays and linear graphs. Three valuable pieces of information are generated from a Taguchi analysis:

1. Which factors or parameters are significant to the output (or objective functions).
2. The relative significance of those factors.
3. Which direction for levels of those factors will lead to further improvement or optimization to the design.
An orthogonal array contains the number of experimental runs, the number of levels of each input factor or

parameter (such as two levels: high and low), and the number of columns in the array.5 In an orthogonal array, every
input factor is placed in one of the columns. A linear graph contains the relationship of input factor interactions.
Taguchi has created a transformation of the repetition data to another value, which is a measure of the variation
present. This transformation is the signal-to-noise (S/N) ratio.5−6 By examining the S/N ratios, the significant
factors can be identified.

For each design objective, the Taguchi methods identify the degree of significance of each parameter to its output.
This parameter significance is then normalized to form a so-called parameter significance index, which contains the
following three trends/categories: the higher the better (HB), the closer to the mean the better (MB), and the lower
the better (LB). Thus, for each input parameter the significance index indicates the trend and the relative degree of
significance. The procedure for performing Taguchi analysis is briefly described below with an illustrative example.

Step 1: Find the appropriate Taguchi orthogonal array
For an illustration purpose, Table 1 shows a popular orthogonal array, L27 (313) in which the subscript “27” stands

for 27 experiment runs, “3” stands for three levels (1 for low, 2 for medium and 3 for high), and the superscript “13”
stands for 13 columns which are for control factors and their interactions.
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Table 1 Taguchi’s orthogonal array L27 (313).

Column no.
Run
no. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3

4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 1 2 2 2

7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1

10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2

13 2 2 3 1 1 2 3 2 3 1 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1

16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 3 1 1 2 3

19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1 3 2 1

22 3 2 1 3 1 3 2 2 1 3 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3

25 3 3 2 1 1 3 2 3 2 1 2 1 3
26 3 3 2 1 2 1 3 1 3 2 3 2 1
27 3 3 2 1 3 2 1 2 1 3 1 3 2

Step 2: Construct the orthogonal array
Starting with the first parameter (column 1) in Table 1, the values for the first nine experiments or cases are set at

the low end (i.e. the lowest in the specified range), whereas the values for the next nine are set at the middle (i.e. the
mean), and the remaining other nine are set at the high end (i.e. the highest). The process is repeated for each of the
other parameters.

Step 3: Find the corresponding output
A program is written to run the 27 cases, and the corresponding output for each case is recorded. Thus, for each

design optimization objective, there are a total of 27 outputs to be evaluated.
Step 4: Perform Taguchi analysis
When performing Taguchi analysis, the S/N (Signal-to-Noise) ratio for each case is calculated. The S/N ratio is an

indication of significance. There are three different types of S/N ratios: the-larger-the-better, the-nominal-the-better
and the-smaller-the-better, depending on the type of objective.6 For instance, the formula for calculating the S/N
ratio for the-smaller-the-better type is:

η = −10 log10

[(
n∑

i=1

y2
i

)
/n

]
(1)

where n is the number of experiment runs for each level (i.e. 1, 2 or 3), and yi is the corresponding output value for
each run. Thus, the S/N ratios for the first parameter at low end will be the η value obtained from runs 1 through 9,
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whereas the ratios at the medium will be the η value obtained from runs 10 through 18, and those at the high end will
be the η value obtained from runs 20 through 27. Likewise, the S/N ratios for the second parameter at the low end
will be the η value obtained from the following nine different runs: 1, 2, 3, 10, 11, 12, 19, 20, and 21. The process
is repeated for each parameter at each level. Afterward, the η values for each parameter are compared at the three
different levels. If, for instance, the η value at the low end is the highest, then this parameter is said to be the lower
the better in optimizing the output (design objective) value.

In addition to calculating the S/N ratios for each parameter and identifying the trend for each parameter (i.e.
the lower the better, the closer to the mean the better or the higher the better), the Taguchi analysis also generates
parameter significance from which significant parameters can be identified. In other words, the Taguchi analysis
identifies which parameters are more significant than others, and uses their trends (low, medium or high) to help
optimize a design objective. In MDO where conflicting design objectives often exist, parameter settings become
complicated, which is better to be handled by fuzzy logic. The parameter significance will be further explained in
the section of global optimization versus local optimization.

B. Fuzzy Logic
Fuzzy logic is a mathematical technique for understanding, and controlling specific manipulation of continuously

variable truth-values.7 In more specific terms, fuzzy logic is all about the relative importance of precision. Thus, fuzzy
logic measures the truth of a given situation as a matter of degree. Between the input and the output, there is a black
box that does the work through the use of if-then rules, which embody the knowledge that governs the action of the
system that is being described or modeled. For this work, fuzzy logic is used to set each design parameter at optimum,
and also to resolve the conflict among several design objectives. The input for the fuzzy logic contains membership
functions of each input variable, and the output also contains membership functions of each output variable. The
degree of membership is between −1 and 1 for each input variable, and 0 and 1 for each output variable. The Taguchi
analysis generates significance index value, which falls in one of three categories: the higher the better (HB), the
mean the better (MB), and the lower the better (LB). In HB and LB, the value is positive and negative, respectively.
However, the value in MB can be a small positive or negative number meaning that the parameter value should be
set slightly above or below the mean in the specified parameter range. Therefore, the fuzzy inference system for
this work was designed to have three input memberships (HB, MB and LB), and three output memberships (High,
Medium and Low). The input is the normalized significance index value (from Taguchi analysis) between −1 and
1, where −1 stands for the extreme value in LB, and 1 stands for the extreme value in HB. The output represents
the optimum value for each parameter, which is normalized between 0 and 1. The output value of 1 indicates that
the parameter value should be set at highest within the specified range, whereas the output value of 0 means that the
parameter value should be set at the lowest within the specified range.

For single-objective optimization, each parameter has one fuzzy logic input variable (the significance index
value) and one output variable. However, for multiple-objectives optimization, say four (4), for example, there are
four input variables (the significance indices for objectives 1 to 4) and one output variable. In this particular case
(four objectives), the fuzzy inference system takes four values into consideration at the same time, and yields a
compromised solution as output. The procedure for applying fuzzy logic is briefly described below.

Step 1: Define input and output membership functions
A membership function essentially embodies all fuzziness for a particular fuzzy set; its description is the essence

of a fuzzy property or operation. Therefore, it is important to adequately define the membership functions. Some
typical membership functions are such as stepwise, triangular, trapezoidal, sigmoid curve, and Gaussian curve.
Type of membership function, such as triangular or Gaussian curve, is not critical in designing a fuzzy inference
system. However, having appropriate number of membership functions for input and output is important. Each type
of membership function is specified by several parameter values. For instance, a triangular membership function
uses three parameter values (i.e. three vertex locations) to define its shape. These three values were first assumed and
then tested by observing the output values. This process usually takes several modifications until all the membership
functions are properly defined.

Step 2: Develop the fuzzy rules
The if-then fuzzy rules are derived from the knowledge obtained via Taguchi analysis. For a single-objective case,

they can be as simple as the following three rules:
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Rule 1: If (input1 is HB) then (output1 is High)
Rule 2: If (input1 is MB) then (output1 is Medium)
Rule 3: If (input1 is LB) then (output1 is Low)
For design optimization of single objective, there will be one input (parameter significance) and one output

(parameter adjustment), and the three rules can be stated more specifically as follows:
Rule 1: If (parameter significance is HB) then (parameter adjustment is High)
Rule 2: If (parameter significance is MB) then (parameter adjustment is Medium)
Rule 3: If (parameter significance is LB) then (parameter adjustment is Low)
Likewise, for design optimization of four objectives, there will be four inputs (one parameter significance for

each objective), and one output (parameter adjustment), and a total of 12 rules (three rules for each objective). In
this case, the four inputs are taken into account at the same time to determine the best parameter adjustment for
all objectives. In other words, the fuzzy logic resolves the conflicts among design objectives, and helps find the
compromised solution.

Step 3: Run the fuzzy inference system
Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic.

The mapping then provides a basis from which decisions are made. There are two types of fuzzy inference systems:
Mamdani-type and Sugeno-type. These two types of inference systems vary somewhat in the way outputs are
determined. The former, chosen for this work, is most commonly seen fuzzy methodology. The fuzzy inference
system performs the following tasks:8 (1) fuzzify the inputs, (2) apply fuzzy operation, (3) apply implication method,
(4) apply aggregation method, and (5) defuzzify the output. The end result is a crisp value for each parameter.

In this work, the fuzzy inference system first fuzzifies the normalized parameter significance index values between
−1 and 1, and finally defuzzifies the parameter adjustment value between 0 and 1. This parameter adjustment value
is then used for optimum parameter settings later. The main concept in the simulation-based approach is that more
significant factors should be adjusted more, and the amount of adjustment should be proportional to their degree of
significance. Fuzzy logic is the best candidate to deal with degree of membership (i.e. the degree of significance, in
this case).

The inter-parameter constraints are handled by the use of parameter significance and fuzzy logic. For instance,
to optimize objective 1, parameters 1 and 2 may be completely in conflict with each other. Thus, if parameter 1
needs to be set as high as possible, then parameter 2 will have to be set as low as possible. In this case, parameter
1 will have a positive parameter significance value, while parameter 2 will have a negative value. The next task is
parameter settings, which should be according to their respective degree of significance. In other words, if parameter
1 is the most significant parameter in the system, then it will be set at the very high end. Parameter 2, on the other
hand, will be set low, but not at the very low end because this parameter is not most significant. Note that the fuzzy
inference system uses the degree of parameter significance as input, and generates a crisp output value for parameter
adjustment.

C. Neural Networks
Artificial neural networks are created to mimic the neural system in human brains. The network consists of many

interconnected nodes, similar to neurons in the human brain. Each node assigns a value (known as weight) to the
input from each of its counterparts. As these values (i.e. weights) are changed, the network can adjust the way it
responds. A typical network usually has at least three layers: the input layer, the hidden layer, and the output layer.6

The first layer is a vector containing input data, and the last layer is a vector containing the desired output. The
number of neurons in the input layer equals the input variables. Likewise, the number of neurons in the output
layer equals the number of output variables. The second layer is known as the hidden layer, which is essential
to handle the non-linear relationship between inputs and outputs. When the relationship is highly non-linear, two
or even three hidden layers may be used. It should be noted that some researchers do not consider input data as
a layer. Thus, their typical network architecture becomes two layers (hidden layer and output layer). In terms of
network training, backpropagation neural network9 (BPNN) is the most widely used net, since it yields accurate
outputs when the training data are rich. A trained neural network can be used to provide instant input-to-output
mapping.
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D. Interaction Among the Three Techniques
The framework of this multidisciplinary system optimization consists of three phases: Taguchi analysis, fuzzy

inference and neural network mapping. Taguchi analysis is performed first, which generates the normalized parameter
significance index values. These values are then passed on to the fuzzy inference system in which every input value is
fuzzified and then defuzzified to yield a crisp value between 0 and 1. Finally, these crisp values are used for parameter
setting in which 0 and 1 correspond to the lowest and highest values in the specified range, respectively. The trained
neural network mapping instantly gives the output values of the optimum design (when a database is available). This
instant mapping gives the user a chance to fine-tune his or her design without having to go through the optimization
process one more time.

III. Global Optimization versus Local Optimization
The search-based approach often leads to a local optimum. A common searching technique in global optimization

is known as multi-start, in which the user keeps changing the starting point until no better solution can be found. In
contrast, the simulation-based approach automatically leads to a global optimum solution.

A. Parameter Significance
The Taguchi analysis generates the significance value for each design parameter at its low (L), mean (M) and

high (H) levels. The so-called signal-to-noise (S/N) ratios for each parameter at these three levels are calculated.
There are several ways to calculate the S/N ratio depending on the purpose of the design objective (i.e. minimizing,
maximizing, averaging, etc.). The formulas for calculating S/N ratios are designed such that higher ratios always
represent higher significance regardless of maximization or minimization.

The S/N ratios at the low end, middle and high end are first evaluated to determine the possible trend: the lower the
better (LB), the closer to the mean the better (MB) and the higher the better (HB). However, in reality, the parameter
whose S/N ratio is the highest can be anywhere between the low and high ends. To find where the highest S/N ratio
is, the three S/N ratio values (at the low end, middle and high end) are fitted by a second order curve, as shown in
Fig. 1, from which the location of the highest value can be easily determined.

For each parameter, the parameter significance is calculated by taking the difference between the S/N ratio of
the current design baseline and the maximum S/N ratio. Thus, every parameter has its parameter significance value.
These values are then normalized (by dividing all values by the maximum) to form the Parameter Significance Index
Values (PSIV). The fitted S/N ratio curve remains the same for all cases, but the PSIV varies whenever the design
baseline is different. Thus, a parameter that is most significant with the first design baseline, and could become most
insignificant if the second design baseline happens to be very close to the optimum point.

Fig. 1 The fitted S/N ratio curve.
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B. Parameter Settings
The last and most important task in the simulation-based optimization is parameter settings. Note that the signifi-

cance values for all parameters are normalized separately at the high, medium and low levels. They carry a positive or
negative sign.A positive or negative parameter significance value signifies the necessity of having positive or negative
parameter adjustment, respectively. The fuzzy inference system transforms from the normalized significance index
value in the space of [−1, 1] to parameter adjustment in the space of [0, 1]. In terms of parameter adjustment, value of
“1” means that the parameter is best set at the point where the parameter significance value is at maximum, whereas
value of “0” means that the parameter is best set at where it is now. The current design baseline is always compared
with the optimum point. Thus, some parameters need to be increased from their current values, while others need to
be decreased, instead. The amount of parameter adjustment depends on the parameter’s degree of significance, which
is gracefully handled by fuzzy logic. Since the parameter adjustment is continuous, the presented simulation-based
approach is, indeed, for continuous optimization.

IV. Single-Objective Optimization versus Multiple-Objectives Optimization
In comparison with single-objective optimization, multiple-objectives optimization is much more complex. The

complexity arises as the number of objectives increases. The more objectives the system has to optimize, greater
the possibility of conflict will be. In addition, the user’s preference weights on each objective also contribute to the
complexity. Generally speaking, multiple-objectives optimization can be classified into the following two types:

A. Multiple-Objectives Optimization with No Preference
In this case, all design objectives are treated equally important. The fuzzy inference will resolve the conflicts

among different objectives with equal weight. Thus, in the case of two objectives, there will be two input parameters
fed into the inference system to produce a single crisp value as output.

B. Multiple-Objectives Optimization with Preferences
In the search-based multiple-objectives optimization, the user simply pre-multiplies the preference weights on

each objective function to form the so-called pseudo objective function F

F =
∑

wifi (2)

where wi is the preference weight on the i th objective, and fi is the function of the i th objective.
In the case of two objectives, for instance, 0.7 on objective 1 (i.e. more preferred) and 0.3 on objective 2 (less

preferred), the pseudo objective function becomes:

F = w1f1 + w2f2 = 0.7f1 + 0.3f2 (3)

The difficulty in optimizing the above new function is that the user has to know in advance, the approximate order
of magnitude for each objective function. Otherwise, the weight distribution will not be as desired.

In contrast, the simulation-based multiple objective optimization deals with the preference weights at the end of
the optimization process. For instance, if the fuzzy output value of objectives 1 and 2 are Z1 and Z2, respectively,
and the preference weights on objectives 1 and 2 are w1 and w2, respectively, then the overall fuzzy output value Z

can be obtained from the following weighted average formula:

Z = (w1Z1 + w2Z2)/(w1 + w2) (4)

where Zi is in the range of [0, 1]. Note that w1 + w2 �= 1, but [w1/(w1 + w2)] + [w2/(w1 + w2)] = 1
In the case of simultaneously optimizing two extremely conflicting objectives with no preference, parameter A

might have to be set at the high end (i.e. Z1 = 1) to optimize objective 1, and also set at the low end (i.e. Z2 = 0) to
optimize objective 2. Substituting Z1 = 1 and Z2 = 0, and w1 = 1 and w2 = 1 (i.e. equal weight) into Eq. (4) gives
the value of 0.5 for Z, which means that this parameter should be set in the middle of the range as a compromised
solution. Now if preference weights are changed, such as w1 = 2, and w2 = 1, then the overall output value Z will
become 0.667, instead of 0.5. This indeed, reflects the shift on the user’s preference.
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It should be noted that Eq. (4) is essentially equivalent to taking the linear approximation in a multi-variable
space. The fuzzy logic’s membership functions can be linear, but they are generally non-linear. Therefore, in the case
of no preference, it is not recommended to use Eq. (4), by making all wi equal. In the case of preference, one can
edit he fuzzy logic rules and place different weights on each rule. But, this will require the user to know how to edit
the fuzzy rules during the course of optimization, which could be cumbersome for some users. In this case, Eq. (4)
can be used as an alternative. The Eq. (2), often used in the search-based multiple-objectives optimization, should
not be used in the simulation-based multiple-objectives optimization because the preference weights placed on each
objective have no bearing on determining the parameter significance, which means that the user’s preference will not
be taken into account.

In the case of having preference, Eq. (4) is a preferred alternative due to the fact that the user can obtain the desired
optimum solution simply by placing different preference weights on each objective without having to perform the
optimization all over again. Furthermore, the equation guarantees that the overall fuzzy output value Z to be always
bounded between 0 and 1.

V. Illustrative Example
As a result of Taguchi analysis, parameter significance values are calculated and normalized between −1 and 1.

An example containing these values and their trends are listed Table 2.
Note that LB, MB and HB stand for the higher the better, the closer to the mean the better and the higher the

better, respectively. If the trend for a parameter is LB, then its significance index value will be negative. Likewise,
if the trend is HB, then its index value will be positive. The index values that are slightly above or below 0 will fall
into the category of MB.

In this example, there are 14 design parameters and 4 design objectives. In terms of optimizing a single objective,
for instance, objective 1, par_2 (i.e. parameter 2) is LB, and has an index value of −1, which means that it should
be set at the very low end. Also, par_6 is MB, and has the index value of 0.020, which means that it should be set
slightly above the midpoint. In terms of optimizing two objectives such as objectives 1 and 2 with equal preference
weight, par_5 should be set at the very high end for optimizing objective 2 alone, but it should also be set low
for optimizing objective 1 alone. Thus, a conflict exists between these two objectives. In this case, fuzzy logic can
gracefully resolve the conflict, and generate a compromised solution that is a little above the midpoint. If the user
wishes to place more preference on objective 1, then the new compromised solution might be below the midpoint. As
the preference weight ratio between the two objectives increases, the ability of the fuzzy inference system to resolve
the conflict decreases. This is simply because the purpose of multiple-objectives optimization is to simultaneously

Table 2 Parameter significance index values.

Objective 1 Objective 2 Objective 3 Objective 4

Trend Index Trend Index Trend Index Trend Index

par 1 HB 0.273 LB −0.221 LB −0.571 LB −0.305
par 2 LB −1 MB −0.088 HB 0.749 MB −0.026
par 3 HB 0.237 HB 0.292 LB −0.516 LB −0.164
par 4 MB 0.093 MB 0.077 HB 0.229 MB −0.044
par 5 LB −0.592 HB 1 HB 0.191 HB 1
par 6 MB 0.020 HB 0.225 LB −1 MB 0.028
par 7 LB −0.178 MB 0.053 HB 0.110 MB −0.075
par 8 MB 0.056 MB 0.034 LB −0.248 MB −0.063
par 9 HB 0.123 LB −0.109 MB 0.087 MB 0.038
par 10 HB 0.142 LB −0.490 LB −0.383 MB −0.060
par 11 LB −0.134 MB 0.023 MB 0.071 LB −0.129
par 12 HB 0.137 HB 0.253 HB 0.102 LB −0.265
par 13 MB −0.075 HB 0.110 HB 0.121 HB 0.058
par 14 HB 0.551 MB −0.071 LB −0.194 MB −0.038
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optimize or improve all design objectives. Greatly improving one objective at the big expense of the other is not a
common practice in MDO.

VI. Results and Discussions
To evaluate this design tool, a design baseline was chosen. The baseline was run both at sea level and at an altitude

of 1,067 m. This is because the designs are very different from each other. Therefore, the parameter significant index
values must be generated separated for each case. Tables 3 through 6 show the optimization performance results for
optimizing one, two, three and four objectives, respectively. The four conflicting design objectives are listed below:

Objective 1: To maximize the engine thrust
Objective 2: To minimize engine fuel consumption
Objective 3: To minimize the engine emission
Objective 4: To minimize the engine jet velocity

Design Baseline
The 14 parameters used as the design baseline for aircraft engine design are listed below:
par_1 = 0; 0.8, par_2 = 0; 1,067, par_1 = 3.75, par_2 = 0.8975, par_3 = 0.8, par_4 = 7, par_5 = 0.9075,

par_6 = 0.9225, par_7 = 0.9125, par_8 = 3490, par_9 = 3245, par_10 = 2620, par_13 = 16, and par_14 = 3449
where par_1 and par_2 are Mach number and Altitude, respectively, which are evaluated at only two levels (i.e. Mach
number = 1 at sea level and Mach number = 0.8 at altitude of 1,067 m). During the optimization process, par_3
through par_14 are free to move within their pre-specified ranges. These 12 parameters are such as low and high-
pressure compressor ratios, low and high-pressure compressor efficiencies, bypass ratio, low and high-pressure turbine
efficiencies, low and high-pressure turbine inlet temperatures, burner temperature, and inlet corrected airflow. For the
sea level case, the initial four objective values are: thrust = 240,300 N., thrust specific fuel consumption = 0.8299,
emission (NOX) = 0.16454 g nox/kg fuel, jet velocity = 72.94 m/sec. For the altitude of 1,067 m case, they are:
130,020 N., 1.202, 0.2543 g nox/kg fuel and 72.63 m/sec. Note that in this example, the allowable ranges for input
variables are ±2% for all efficiencies, and ±10% for others.

Data Preparation
Two sets of aircraft engine data were used to train the input-output relationship. The first set about subsonic and

above sea level (between 305 and 762 m in altitude) consists of 733 engine data (14 input parameters and 4 output
parameters for each engine), and the second set about subsonic at sea level consists of 243 engine data. Some of
the engine data already existed, but majority of them were newly created for this project only. To ensure even data
distribution, the training data were originally based on a Taguchi orthogonal array, L81(340), which contained 81
cases. The data were expanded later to include more combinations of parameter values. Running the aircraft engine

Table 3 Performance improvement in optimizing one design objective.

Thrust (%) Fuel (%) Emission (%) Jet vel. (%)

(a) Maximizing the thrust
1,067 m 12.57 0.15 −19.52 −7.62
Sea level 6.24 −0.63 −10.09 −4.93

(b) Maximizing the fuel consumption
1,067 m 0.95 14.97 −8.93 1.02
Sea level −2.53 9.38 −4.84 3.55

(c) Maximizing the emission
1,067 m −6.40 3.44 27.38 4.34
Sea level −4.44 0.73 41.60 4.02

(d) Maximizing the jet velocity
1,067 m −6.04 −4.72 13.24 4.33
Sea level −9.01 2.27 25.80 8.35
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Table 4 Performance improvement in optimizing two design objectives.

Thrust (%) Fuel (%) Emission (%) Jet vel. (%)

(a) Maximizing thrust, and minimizing fuel consuption
1,067 m 7.61 8.92 −13.32 −4.51
Sea level 1.20 6.48 −4.59 0.09

(b) Maximizing thrust, and minimizing emission
1,067 m 2.63 1.92 5.82 −2.05
Sea level −0.05 2.34 18.41 0.23

(c) Maximizing thrust, and minimizing jet velocity
1,067 m 2.91 −1.37 −2.16 −2.28
Sea level −2.86 5.26 10.67 2.94

(d) Minimizing fuel consumption and emission
1,067 m −2.39 9.53 10.76 2.02
Sea level −2.34 5.68 21.43 2.52

(e) Minimizing fuel consumption and jet velocity
1,067 m −2.58 8.55 4.40 1.80
Sea level −5.23 8.51 14.20 5.33

(f) Minimizing emission and jet velocity
1,067 m −6.02 1.94 19.37 4.05
Sea level −6.11 3.20 31.70 5.66

design program at NASA (without optimization) took about 15 to 20 minutes including data entry. For each engine,
the 14 input parameter values and their corresponding four output values (i.e. thrust, fuel consumption, emission and
jet velocity) were recorded in an Excel worksheet to later training.

The two sets of data were well trained using BPNN. They both passed the generalization test with RMS errors
ranging between 1.2 and 3.7%. To best handle the non-linearity between the inputs and the outputs, two hidden layers,
each with 20 neurons, were used in the BPNN. With rich data and use of two hidden layers, the training time was
only about five to ten minutes for each data set. Good training essentially enables continuous input-output mapping.

In the following tables (Tables 3 to 6), a positive percentage of performance means that the objective has been
optimized and the performance has been improved. This is regardless of maximization or minimization. For instance, a
negative percentage for emission means that the emission was not improved, which results in increasing the emission.
On the other hand, a positive percentage for emission means that the emission has been improved, which results
in decreasing the emission. A design objective in bold face means that only that particular objective is optimized.
Likewise, two objectives in bold face mean that the two are simultaneously optimized.

Table 5 Performance improvement in optimizing three design objectives.

Thrust (%) Fuel (%) Emission (%) Jet vel. (%)

(a) Maximizing the thrust, and minimizing the fuel consumption and emission
1,067 m 1.87 3.57 5.80 −1.44
Sea level −0.19 3.53 16.91 0.46

(b) Maximizing the thrust, and minimizing the fuel consumption and jet velocity
1,067 m 1.53 3.69 0.41 −1.29
Sea level −2.57 5.75 9.16 2.73

(c) Maximizing the thrust, and minimizing the emission and jet velocity
1,067 m 2.34 1.85 5.08 −1.89
Sea level −2.38 3.72 17.29 2.33

(d) Minimizing the fuel consumption, emission and jet velocity
1,067 m −2.30 8.23 10.12 1.76
Sea level −3.96 6.31 21.58 4.00
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Table 6 Performance improvement in optimizing four design objectives.

Thrust (%) Fuel (%) Emission (%) Jet vel. (%)

1,067 m 1.28 3.48 5.43 −1.14
Sea level −1.87 4.12 15.60 1.96

As can be seen in the above four tables, the tool performs rather well in finding the optimum design, not only for
single objective, but also for multiple objectives. The data shown in the tables are based on the assumption that all
objectives are equally important. One can clearly discern the strong coupling between thrust and nozzle jet velocity;
only one can be optimized at a time at the expense of the other one. This is simply because these two objectives
conflict with each other. Jet velocity here is an indication of the engine noise level. It is worth noting that this design
tool was able to find a solution, which decreases the fuel consumption and emission while increasing the thrust, with
a small increase in jet velocity (about 1%) for the 1,067 m case (see Tables 5(a) and 6).

VII. Conclusions
The presented simulation-based approach combines Taguchi methods and soft computing techniques to perform

multidisciplinary design optimization. More specifically,
1) Taguchi methods were used to generate the parameter significance index values
2) Based on the significance index values, fuzzy logic was used to set the design parameters at optimum
3) Fuzzy logic was also used to resolve the conflicts among different objectives
4) Neural networks were used to generate the instant input-output mapping. Such a capability allows the user to

instantly evaluate the optimization performance, particularly in placing the preference weights and fine-tuning
the optimum solution.

The presented simulation-based approach is superior to most traditional search-based optimization techniques in
the following four aspects:

1) In seeking the optimum solution, this presented approach never diverges
2) The optimum solution is obtained in real time
3) The optimum solution is always global
4) The parameter significance index gives the user a good guidance to fine-tune the optimum solution.
The presented design approach intends to find the optimum solution in real time so as to reduce the design cost.

Therefore, the solution thus obtained, without vigorous iterations, may not be at the very optimum mathematically.
Nevertheless, the user can fine-tune the optimum solution or place different preference weights on each objective to
achieve the desired optimum solution.
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